Biotherapy of Brain Tumors with Phosphatidylserine-Targeted Radioiodinated SapC-DOPS Nanovesicles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors

Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phos...

متن کامل

In Vivo Optical Imaging of Brain Tumors and Arthritis Using Fluorescent SapC-DOPS Nanovesicles

We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Ani...

متن کامل

Targeting and Cytotoxicity of SapC-DOPS Nanovesicles in Pancreatic Cancer

Only a small number of promising drugs target pancreatic cancer, which is the fourth leading cause of cancer deaths with a 5-year survival of less than 5%. Our goal is to develop a new biotherapeutic agent in which a lysosomal protein (saposin C, SapC) and a phospholipid (dioleoylphosphatidylserine, DOPS) are assembled into nanovesicles (SapC-DOPS) for treating pancreatic cancer. A distinguishi...

متن کامل

Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles.

Squamous cell carcinoma (SCC) and melanoma are malignant human cancers of the skin with an annual mortality that exceed 10,000 cases every year in the USA alone. In this study, the lysosomal protein saposin C (SapC) and the phospholipid dioloylphosphatidylserine (DOPS) were assembled into cancer-selective nanovesicles (SapC-DOPS) and successfully tested using several in vitro and in vivo skin c...

متن کامل

SapC-DOPS nanovesicles: a novel targeted agent for the imaging and treatment of glioblastoma

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor. Classified by the World Health Organization (WHO) as grade IV astrocytoma, GBMs are extremely aggressive, almost always recur, and despite our best efforts, remain incurable. This review describes the traditional treatment approaches that led to moderate successes in GBM patients, discusses standard imaging modaliti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cells

سال: 2020

ISSN: 2073-4409

DOI: 10.3390/cells9091960